Title: | Fisher-Shannon Method |
---|---|
Description: | Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy'). |
Authors: | Fabian Guignard [aut], Mohamed Laib [aut, cre] |
Maintainer: | Mohamed Laib <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.1 |
Built: | 2024-10-23 03:28:32 UTC |
Source: | https://github.com/cran/FiSh |
Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy').
If this R code is used for academic research, please cite the following paper where it was developed:
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi:10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
Fabian Guignard [email protected] and
Mohamed Laib [email protected]
Maintainer: Mohamed Laib [email protected]
S. J. Sheather and M. C. Jones (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683 - 690.
M. P. Wand and M. C. Jones (1995). Kernel Smoothing. Chapman and Hall, London.
C. Vignat, J.F Bercher (2003). Analysis of signals in the Fisher–Shannon information plane, Physics Letters A, 312, 190, 27 – 33.
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi:10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
Bandwidth selector for non-parametric estimation. Estimates the optimal AMISE bandwidth using the Normal Scale Rule with Gaussian kernel.
nsrk(x, log_trsf=FALSE)
nsrk(x, log_trsf=FALSE)
x |
Univariate data. |
log_trsf |
Logical flag: if |
The bandwidth value.
M. P. Wand and M. C. Jones, (1995). Kernel Smoothing. Chapman and Hall, London.
x <- rnorm(1000) h <- nsrk(x)
x <- rnorm(1000) h <- nsrk(x)
Non-parametric estimates of the Shannon Entropy Power (SEP), the Fisher Information Measure (FIM) and the Fisher-Shannon Complexity (FSC), using kernel density estimators with Gaussian kernel.
SEP_FIM(x, h, log_trsf=FALSE, resol=1000, tol = .Machine$double.eps)
SEP_FIM(x, h, log_trsf=FALSE, resol=1000, tol = .Machine$double.eps)
x |
Univariate data. |
h |
Value of the bandwidth for the density estimate |
log_trsf |
Logical flag: if |
resol |
Number of equally-spaced points, over which function approximations are computed and integrated. |
tol |
A tolerance to avoid dividing by zero values. |
A table with one row containing:
SEP
Shannon Entropy Power.
FIM
Fisher Information Measure.
FSC
Fisher-Shannon Complexity
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi:10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
library(KernSmooth) x <- rnorm(1000) h <- dpik(x) SEP_FIM(x, h)
library(KernSmooth) x <- rnorm(1000) h <- dpik(x) SEP_FIM(x, h)